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ABSTRACT

The recent and imminent launch of the SMOS and Aquarius
satellites carrying microwave L-band radiometers provides
an opportunity to map Sea Surface Salinity (SSS) globally
with an expected error < 0.2 psu. However, the aecuracy of
retrieved SSS depends eritically on brightness temperature
(Tb) corrections for sea surface roughness (SSR) effects.
This paper assesses the performance of representative
roughness correction miodels when eompared  with
published data, and applied to recently-acquired airborne L-
band radiometer data. One type of model currently being
used to process SMOS data combines a wind-driven gravity
wave spectrum that deseribes SSR, with an electromagnetic
(EM) model that determines microwave emissivity, to
prediet the Tb roughness inerement relative to the flat sea
response. We lind that seclection of both the speetral and
cmissivity models strongly influences the resulting (~1 K)
Tb errors. We conelude that more aceurate modeling of
short wavelength speetral eomponents and their EM
influence is needed, to reduce these errors to acceptable
levels.

Index Terms— L-band Radiometer, Sea Surface
Salinity, Emissivity, Surface Roughness, Wave Speetra

1. INTRODUCTION

The launches of ESA’s Soil Moisture and Oeean Salinity,
SMOS, L-band microwave satellite [8] in Nov., 2009, and
NASA's Aquarius satellite [19] in late 2010, promise
monthly global maps of Sca Surface Salinity (SSS) over the
deep oeean with 0.2 psu preeision at 100 km resolution.
However, SSS retricval aecuracy depends eritically on
corrections for SSR effects. These effects ehange the L-
band (~21 em wavelength) sea surface brightness
temperature, Tb, predicted by 'flat sea’ emissivity models
[17], as mueh as do open ocean surface salinity variations.
Thus, they require carcful correction. This paper deseribes
the evaluation of roughness correetion models designed for
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retricving SSS from L-band mierowave radiometer Tb
measurements over rough seas. The paper first deseribes the
airborne instrumentation, and the wave speetrum  and
emissivity models used. Then results from sceveral models
are presented and eompared using published data and recent
NRL Salinity, Temperature and Roughness Remote
Scanner, STARRS, airbome salinity mapper campaign
measurements. It 1s shown that use of Hwang’s recently
published wave speetrum [12] to drive the SSA/SPM [15]
[16] [22] [25] emissivity model can eliminate the need for
an overall factor of two inerease in spectral intensity used in
previous roughness correction models.

2. METHODS
2.1. Airborne Instrumentation

STARRS comprises L and C-band microwave radiometers,
an infrared (IR) radiometer, integrated GPS receiver, and
gyro. The eombined measurements are used to retricve sca
surface salinity (SSS), temperature (SST) and roughness.
The L-band radiometer, used primarily to retrieve SSS, is a
multi-bcam system sensing mierowave therimal emission
from the sea surface within a 24 MHz wide protected band,
eentered at a frequency of 1.4 GHz. The 6 antenna beams,
with 15 deg hall power beam width, point downward and to
cither side of the aireraft at incidence angles of +/- 7, 22 and
38 degrees. The nadir-viewing IR radiometer senses SST
from thermal emission in the 8-14 and 9.6-11.5 mieron
bands. For typical aireraft speeds of 80 m/s and altitudes of
2600 m, the beam geomctry yields a 5.2 km swath width.
See [1] and [20] for other instrument and processing details.

2.2. Roughness Emissivity Models

Various emissivity models are presentfy avatlable to correct
lor the adverse eltects of roughness-enhanced enussion on
microwave SSS retrievals. These include nigorous [21],
asymptotic [16] [22] [26] and empirical model types [2] [3]
[9]. Three models of the last two types are impiemented in
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Fig 1. SPM/SSA calculations from diffcrent wind-wave
Spectra. (Top) Curvature spectra B(k) of Elfouhaily et al. [5]
and Kudryavtscv et al. [13] versus wavenumber k(rad/m).
(Bottom) Predicted 75 (K) versus wind speed U(m/s) at 10 m
from SSA/SPM for Inc.Ang. 37 deg., 75 298 K, S 35 psu,
Inv.wave age=0.84.

the SMOS Level 2 processor. The asymptotic models are
driven by auxiliary wind data and based on a specificd
wind-wave spectrum. Their accuracy is strongly tnfluenced
by the choice of spectrum. The empirical modcls are driven
directly by auxiliary wind or sea state data, and calibrated
using in situ observations. They take advaniage of SMOS’s
multi-angle view capability [8]. In contrast, Aquarius will
model roughness empirically using radar cross scctions
observed by an on-board L-band scatterometer [19]. The
varicty of models adopted, even for the singlc mission,
SMOS, is a reflection of recent issues and innovations in
this ficld, and of the dominant role of sca surface roughness
corrections in the L-band radiomecter error budgets.

2.3. Wave Spectral Models

The asymptotic emissivity models are combined with a
wind-driven SSR spectrum to form a complete roughness
correction model. From the perspective of determining
microwave emissivity, the gravity wave spectra remain
poorly defined. The difficulties of specifying an optimal
SSR spectrum is highlighted in the comparison between
field measurements and analytical computations. For
example, Yuch [26] selects the Durden and Vesecky
spectrum [6] for his two-scale model, but must double the
roughness spectral densities to obtain reasonable agrecment
with ficld measurements. Camps et al. [2004] used the [6]
and Elfouhaily et al. [7] spectral models, also doubled, to
makec the calculated rate of change of brightness
temperature with wind spced agree roughly with their
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Fig 2. Average rate of change of Tb with respect to wind
speed, dTb/dU10 (K/m/s) versus incid. angle at 1.41 GHz
calculated using four different wind-wave spectra for wind
speed range 2 to 14 m/s. Hollinger [10] and Camps et al. 3]
field data are superimposed.
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measurcments. While [6] produces mean square slope
(MSS) similar to the classical sun glitter measurements of
Cox and Munk [4], Yueh [26] argued that other wcll known
spectral models produce tntegrated total MSS about twice
the magnitude of the CM data, which could have
underestimated surface slopes that were very steep, but
infrequent [23]. Similar difficulty in specifying the SSR
spectrum is also encountered in active radar scattering
computations [13] [14].

3. RESULTS
3.1. Roughness Correction Model Assessment

To investigate the importance of model choice in computing
roughness corrections for SSS retrieval. we compared
results from the Two-Scalc Model (TSM) of Yuch {26] and
Reul’s {pers. comm.) code for the SPM/SSA asymptotic
modcl [16][22]), both of which are implementcd in the
SMOS L2 processor. These models also employ different
wind-wave spectra to describe sca roughness. SPM/SSA is
driven by the Kudryaviscv, et al. spectrum [18] and TSM by
the Durden-Vesecky spectrum [6] (multiplied by two, as
discussed above), with Gaussian-distributed long wave
slopes [26]. A significant difference in the Tb's predicted by
TSM versus the SPM/SSA model appeared, particularly for
H-Pol. At 50 deg. incidence angle, TSM prediets ~ 2 K
lower Tb influence than SPM/SSA (~4 psu SSS crror!).
Such under-prediction by TSM has previously been
reported by other investigators.
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Fig 3. (Top) STARRS SST transect from Chesapeake Bay
cntrancc to mid Gult Stream. (Bottom) MODIS satcllite SST
image showing transcct crossing Gulf Stream (Red line is
STARRS transact, bfack line is a sateltitc data dropout).

3.2. Effect of Spectral Model

To illustrate the effect of input speetrum choice for a single
asymptotic emissivity model, we show two surface
curvature spectra (Fig. 1) and resulting predictions of L-
band H-Pol Tb’s, derived using Reul’s implementation of
the SPM/SSA model {22]. The input wave spectra werc
those of Kudryavtsev et al. (K) [18] and Elfouhaily et al. (E)
[7]. The resulting Tb predictions differ by ~1 K for an SSS
error of about 2 psu under typical temperate conditions (V-
Pol errors, not shown, were of similar magnitude).
Comparison of Tb wind sensitivity, which results from
using E and K along with the Donelan (D) [5] and Hwang
(H) [12] speetrum to drive SPM/SSA (Fig. 2), shows that H
performs best for H-Pol Tb and is competitive with K for V-
Pol, considering field data spread. Thus H provides the best
overall performance, while both models produce wind
sensitivities appreciably larger than those predicted using
the E spectrum.

3.3. Application to Airborne Measurements

A STARRS transect crossing the continental shelf and
western half of the Gulf Stream conducted during NRL’s
VIRGO experimental campaign in Dec., 2006 shows SST’s
obtained from the STARRS and MODIS IR radiometers and
Gulf Stream location (Fig. 3), and the corresponding
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Fig 4. (Top) STARRS SSS transcct passing NDBC buoys

(red dots, W to E CBBV2, CHLV?2 and 44014). (Bottom) Bar

chart showing L-band 75 [K] corrections trom TSM (bfue).

WS (green), and SPM/SSA (rcd) for the buoy focations, and

observed wind speeds [m/s}] (scc tabels).
STARRS SSS transect (Fig. 4). The bar chart shows the V-
Pol Tb corrections (Delta Tb) computed from TSM [26], the
empincal WISE emissivity model [2] (WS), and SPM/SSA
(with input K spectrum), at locations ncar NOAA data
buoys. The wind speeds observed by the buoys during the
flight arc also shown. The corresponding SSS correction in
this temperate region, in psu, is approximately 2 x Delta Tb
(K). TSM consistently under-prediets Delta Th with respect
to SPM/SSA across the whole range by a factor of about 2.
Implied model-dependent errors are of order 0.75 K in this
case, corresponding to an SSS correction error of about 1.5
psu. This error can be compared with an SSS difference of
~5 psu observed across the Gulf Stream 1n 1999, using the
PALS L-band radiometer [24].

4. SUMMARY

The dominant roughness influence on SSS retrieval comes
from the shorter Bragg-scale components of the wind-wave
speetrum (lem-1m at L-band). Since these waves, in
particular, are poorly represented in traditional spectrum
models, recent spectral model improvements have focused
on better  accounting for their effects using more
sophisticated physical and empirical modehing [12] [18].
This seems preferable to simply doubling the spectral
intensities to predict roughness emissivity influence. As the
short wave components are modulated by the long waves,



they are also influenced by swell [11], which futurc
roughncss correction models should also take into account.
We conelude that it is vital to ehoose the roughness
correction modcl and input foreing function (wind spced,
and/or speetrum) carefully to minimize this major error
source for L-band SSS retrieval. Further enhancements to
thc H spectrum wind dependency are being investigated,
and a rigorous FDTD reference model is currently under
development as an aid in testing and enhancing candidate
operational emissivity models. The results will be shared
with the ESA SMOS and NASA Aquarius science teams.
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